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APPLICATION OF DIFFERENTIAL TRANSFORMATION METHOD TO
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Abstract. Nonlinear problems in partial differential equations are open problems in many
fields of mathematics and engineering. So associated with the structure of the problems,
many analytical and numerical methods are obtained. We show that the differential trans-
formation method is an appropriate method for the Dullin-Gottwald-Holm equation (DGH),
which is a nonlinear partial differential equation arise in many physical phenomena. Hence
in this paper, the differential transform method (DTM) is applied to the Dullin-Gottwald-
Holm equation. We obtain the exact solutions of Dullin-Gottwald-Holm equation by using
the DTM. In addition, we give some examples to illustrate the sufficiency of the method for
solving such nonlinear partial differential equations. These results show that this technique
is easy to apply and provide a suitable method for solving differential equations. To our
best knowledge, the theorem presented in Section 2 has been not introduced previously. We
presented and proved this new theorem which can be very effective for formulating the non-
linear forms of partial differential equations.
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1. Introduction and Background
There are various techniques for solving nonlinear equations such as ordinary differential

equations, partial differential equations and integral equations. Some of these techniques are
based on numerical methods that solve the problem after linearization with Newton’s method
[3, 4, 5, 6]. Some other methods solve the problem analytically, such as the DTM method.
In this work, we will solve the DGH problem using the DTM method. The Dullin-Gottwald-
Holm (DGH) equation has many applications in physics and mathematics fields. In this
paper, we consider the following Dullin-Gottwald-Holm equation
(1.1) ut + αux − βuxxt + γuux + δuxuxx + δuuxxx = 0,

where u(x, t) is the fluid velocity in the x direction, α is related to the critical shallow water
wave speed and β, γ and δ are arbitrary constants.
Authors of [12, 8, 9, 13, 10] utilized different methods such as exact traveling-wave solutions,
linearly solitary wave solutions, soliton-like solutions and Exp-function methods for solving
equation (1.1).
In 1986, Zhou proposed a new method for solving linear and nonlinear problems in electrical
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circuit problems [23]. Authors of [11] and [2] used this method for solving partial differential
equations and system of differential equations. A. Borhanifar and R. Abazari applied this
method for Burgers and Schrödinger equations [1, 7]. In [20, 19, 21, 15, 18], this method
has been utilized for solving some important equations with initial and boundary conditions.
Similar discussions can be found in [14, 22].

2. The Two-dimensional differential transform

The basic definitions and operations of one-dimensional DT were introduced in [23, 11, 2].
In order to speed up the convergence rate and improve the accuracy of calculation, the entire
domain of t needs to be split into sub-domains [16, 17].
Now we introduce the basic definition of the two-dimensional differential transform. To this
end, consider a function of two variables w(x, t), and suppose that it can be represented as a
product of two single-variable functions, i.e., w(x, t) = f(x)g(t). Based on the properties of
two-dimensional differential transform, the function w(x, t) can be represented as

(2.1) w(x, t) =

∞∑
i=0

∞∑
j=0

W (i, j)xitj .

where W (i, j) is called the spectrum of w(x, y). Now we introduce the basic definitions and
operations of two-dimensional DT as follows [14].

Definition 2.1. If w(x, t) is analytic and continuously differentiable with respect to time t
in the domain of interest, then

(2.2) W (h, k) = 1
k!h!

[
∂k+h

∂xk∂th
w(x, t)

]
x=x0, t=t0

,

where the spectrum function W (k, h) is the transformed function, which is also called the
T-function. Let w(x, y) be the original function while the uppercase W (k, h) stands for the
transformed function. Now we define the differential inverse transform of W (k, h) as follows

(2.3) w(x, t) =
∞∑
k=0

∞∑
h=0

W (k, h)(x− x0)
k(t− t0)

h.

Using Eq. (2.3) in (2.2), we have

(2.4) w(x, t) =
∑∞

k=0

∑∞
h=0

1
k!h!

[
∂k+h

∂xk∂th
w(x, t)

]
x0=0, t0=0

xkth =∑∞
k=0

∑∞
h=0W (k, h)xkth.

From the above definitions and equations (2.1) and (2.2), we can obtain some of the fun-
damental mathematical operations performed by two-dimensional differential transform in
Table 1.

Remark 2.2. We denote the arithmetical numbers N
∪
{0} = {0, 1, 2, ...} by A. For a

k ∈ A, we define Ak := {0, ..., k}. For k ∈ N, suppose Ak0 := {2n|n = 0, ..., [k2 ]}, and
Ak1 := {2n− 1|n = 1, ..., [k+1

2 ]}, then Ak = Ak0
∪
Ak1, and Ak0

∩
Ak1 = {}.
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Original function: w(x, t) Transformed function: W (k, h)

u(x, t)± v(x, t) U(k, h)± V (k, h)
cu(x, t) cU(k, h)
∂
∂xu(x, t) (k + 1)U(k + 1, h)
∂r+s

∂xr∂tsu(x, t)
(k+r)!(h+s)!

k!h! U(k + r, h+ s)

u(x, t)v(x, t)
∑k

r=0

∑h
s=0 U(r, h− s)V (k − r, s)

∂
∂xu(x, t)

∂
∂tv(x, t)

∑k
r=0

∑h
s=0(k − r + 1)(h− s+ 1)U(k − r + 1, s)V (r, h− s+ 1)

Table 1. Operations of the two-dimensional differential transform.

Theorem 2.3. If ω(x, t) = ∂n

∂xnu(x, t).
∂m

∂xm v(x, t) then

(2.5) W (k, h) =

h∑
s=0

k∑
r=0

m∏
i=1

(r + i)
n∏

j=1

(k − r + j)U(r +m,h− s)V (k − r + n, s),

for all n,m ∈ A, if m = 0 then
∏m

i=1(r + i) = 1 and if n = 0 then
∏n

j=1(k − r + j) = 1.

Proof. suppose n,m ∈ N then

W (k, h) =
1

k!h!

[ ∂k+h

∂xk∂th
w(x, t)

]
x0=0, t0=0

=
1

k!h!

∂k

∂xk

{
∂h

∂th
ω(x, t)

}
=

1

k!h!

∂k

∂xk

{
h∑

s=0

(
h
s

)
∂s

∂ts

(
∂nu

∂xn

)
∂h−s

∂th−s

(
∂mv

∂xm

)}

=
h∑

s=0

k∑
r=0

1

k!h!

(
h
s

)(
k
r

)
∂r

∂xr

(
∂m+h−su

∂th−s∂xm

)
∂k−r

∂xk−r

(
∂s+nv

∂ts∂xn

)

=
h∑

s=0

k∑
r=0

1

r!(h− s)!s!(k − r)!

∂r+m+h−s

∂xr+m∂th−s
u(x, t)

∂k−r+n+s

∂xk−r+n∂ts
v(x, t)

=

h∑
s=0

k∑
r=0

(r + 1)...(r +m)

(r +m)!(h− s)!

∂r+m+h−s

∂xr+m∂th−s
u(x, t)× (k − r + 1)...(k − r + n)

(k − r + n)!s!

∂k−r+n+s

∂xk−r+n∂ts
v(x, t)

=
h∑

s=0

k∑
r=0

(r + 1)...(r +m)U(r +m,h− s)× (k − r + 1)...(k − r + n)V (k − r + n, s).

In row 5 we are multiplied numerator and denominator by (r+1)...(r+m). This multiplication
is need not to use, if m = 0. Also in row 6 numerator and denominator are multiplied by
(k − r + 1)...(k − r + n), which is need not to use, if n = 0. □

3. Application of the DTM

In this section, we apply the DTM for solving the presented Dullin-Gottwald-Holm equa-
tion. For this aim, consider the equation (1.1) with the following initial and boundary condi-
tions

(3.1) u(x, 0) = f(x), x ∈ R,
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(3.2) u(0, t) = g(t), 0 ≤ t,

(3.3) ux(0, t) = q(t), 0 ≤ t.

Let U(k, h) be the differential transform of u(x, t). By using Table 1., Theorem 2.3, Eq. (2.1)
and Definition 2.1 when x0 = t0 = 0, we get the differential transform version of Eq. (1.1) as
follows

βU(k + 2, h+ 1)(k + 1)(k + 2)(h+ 1) = (h+ 1)U(k, h+ 1) + α(k + 1)U(k + 1, h)(3.4)

+

k∑
r=0

h∑
s=0

{
γ(r + 1)U(r + 1, h− s)U(k − r, s) + δ(r + 1)(r + 2)(k − r + 1)U(r + 2, h− s)U(k − r + 1, s)

+δ(r + 1)(r + 2)(r + 3)U(r + 3, h− s)U(k − r, s)

}
.

By initial and boundary conditions we get

(3.5)
∞∑
k=0

U(k, 0)xk =
∞∑
k=0

f (k)(0)

k!
xk, x ∈ R,

(3.6)
∞∑
h=0

U(0, h)th =

∞∑
h=0

g(h)(0)

h!
th, 0 ≤ t,

(3.7)
∞∑
h=0

U(1, h)th =
∞∑
h=0

q(h)(0)

h!
th, 0 ≤ t.

For k, h = 0, 1, 2, ... the values of U(k, 0), U(0, h), U(1, h) can be obtained from Eqs. (3.5)-
(3.7). By using the Eq. (3.4), we find the remainder values of U , as illustrated in the following
test problems.

Example 3.1. Consider the equation (1.1) with α = β = 1
2 , δ = −1, γ = 2, initial and

boundary conditions, f(x) = ex, g(t) = q(t) = e−t. From Eqs. (3.5)-(3.7), we have

(3.8) U(k, 0) =
1

k!
, U(0, h) = U(1, h) =

(−1)h

h!
k, h ∈ A.

Eq. (3.4) forces

β
1

2
U(k + 2, h+ 1)(k + 1)(k + 2)(h+ 1) = (h+ 1)U(k, h+ 1) +

1

2
(k + 1)U(k + 1, h)(3.9)

+

k∑
r=0

h∑
s=0

{
2(r + 1)U(r + 1, h− s)U(k − r, s)− (r + 1)(r + 2)(k − r + 1)U(r + 2, h− s)U(k − r + 1, s)

−(r + 1)(r + 2)(r + 3)U(r + 3, h− s)U(k − r, s)

}
.

For h = 0 and k = 0, 1, 2, ..., we get
1

2
(k + 1)(k + 2)U(k + 2, 1) = U(k, 1) +

1

2k!
,
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or

(3.10) U(k + 2, 1) =
2U(k, 1)

(k + 1)(k + 2)
+

1

(k + 2)!
.

By induction and using the Eqs. (3.8),(3.10), we obtain

(3.11) U(k, 1) = − 1

k!
, k ∈ A.

From (3.9), for h = 1 and k = 0, 1, 2, ..., we get

(k + 1)(k + 2)U(k + 2, 2) = 2U(k, 2)− 1

2k!
,

or

(3.12) U(k + 2, 2) =
2U(k, 2)

(k + 1)(k + 2)
− 1

2(k + 2)!
.

By induction and using the Eqs. (3.8),(3.12), we obtain

(3.13) U(k, 2) =
1

2k!
, k ∈ A.

From (3.9), for h = 2 and k = 0, 1, 2, ..., we get
3

2
(k + 1)(k + 2)U(k + 2, 3) = 3U(k, 3) +

1

4k!
,

or

(3.14) U(k + 2, 3) =
2U(k, 3)

(k + 1)(k + 2)
+

1

2× 3(k + 2)!
.

By induction and using the Eqs. (3.8),(3.14), we obtain

(3.15) U(k, 3) = − 1

3!k!
, k ∈ A.

Hence we obtain the u(x, t) as follows

(3.16) u(x, t) ≃
∑∞

k=0
xk

k! −
(∑∞

k=0
xk

k!

)
t+ 1

2

(∑∞
k=0

xk

k!

)
t2 − 1

3!

(∑∞
k=0

xk

k!

)
t3 + ...,

which it is the Taylor expansion of the

(3.17) u(x, t) = ex−t,

where it is the exact solution of this example.

Example 3.2. Consider the equation (1.1) with α = 0, β = 4, δ = −2, γ = 1, initial and
boundary conditions, f(x) = 0, g(t) = 0, q(t) = ln(1+t)√

2
. From Eqs. (3.5)-(3.7), we have

(3.18) U(k, 0) = 0, U(0, h) = 0, k, h ∈ A,

(3.19) U(1, 0) = 0, U(1, h) =
(−1)h−1

√
2h

, h ∈ N.
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Eq. (3.4) forces
4(k + 1)(k + 2)(h+ 1)U(k + 2, h+ 1) = (h+ 1)U(k, h+ 1)(3.20)

+

k∑
r=0

h∑
s=0

{
(r + 1)U(r + 1, h− s)U(k − r, s)− 2(r + 1)(r + 2)(k − r + 1)U(r + 2, h− s)U(k − r + 1, s)

−2(r + 1)(r + 2)(r + 3)U(r + 3, h− s)U(k − r, s)

}
.

For h = 0 and k ∈ A, from (3.18),(3.20) we get

(3.21) U(k + 2, 1) =
U(k, 1)

4(k + 1)(k + 2)
.

By induction and using the Eqs. (3.18)-(3.19),(3.21), we obtain

(3.22) U(k, 1) =

{
0 k = 2n, n ∈ A,

1√
24n×(2n+1)!

k = 2n+ 1, n ∈ A.

From (3.18),(3.20), for h = 1 and k = 0, 1, 2, ..., we get

(3.23) U(k + 2, 2) =
U(k, 2)

4(k + 1)(k + 2)
.

By induction and using the Eqs. (3.18)-(3.19),(3.23), we obtain

(3.24) U(k, 2) =

{
0 k = 2n, n ∈ A,
− 1

2
√
24n×(2n+1)!

k = 2n+ 1, n ∈ A.

From (3.20), for h = 2 and k = 0, 1, 2, ..., we get

3× 4(k + 1)(k + 2)U(k + 2, 3) = 3U(k, 3) +
k∑

r=0

{
(r + 1)U(r + 1, 1)U(k − r, 1)(3.25)

−2(r + 1)(r + 2)(k − r + 1)U(r + 2, 1)U(k − r + 1, 1)− 2(r + 1)(r + 2)(r + 3)U(r + 3, 1)U(k − r, 1)

}
.

For k = 2n, n ∈ A, from (3.22),(3.25), we obtain U(2n, 3) = 0. For k = 2n + 1, n ∈ A, from
(3.22),(3.25), we get

(3.26) 3×4(2n+2)(2n+3)U(2n+3, 3) = 3U(2n+1, 3)+
1

2× 4n

n∑
r=0

2r − n

(2r + 1)!(2(n− r) + 1)!
.

The last term in (3.26) vanishes. For this purpose put ur = (2r + 1)!(2(n− r) + 1)! therefor
ur
ur−1

=
2r(2r + 1)

(2(n− r) + 2)(2(n− r) + 3)
≡ φ(r)

h(r)
,

then

(3.27) φ(r)

ur
=

h(r)

ur−1
≡ vr,

vr+1 − vr =
h(r + 1)

ur
− φ(r)

ur
= 2(2n+ 1)× n− 2r

ur
.
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Thus

(3.28) 0 = vn+1 − v0 =

n∑
r=0

(vr+1 − vr) = 2(2n+ 1)

n∑
r=0

n− 2r

ur
.

Equations (3.26),(3.28) forces

(3.29) 4(2n+ 2)(2n+ 3)U(2n+ 3, 3) = U(2n+ 1, 3).

By induction and using the Eqs. (3.19),(3.29), we obtain

(3.30) U(2n+ 1, 3) =
1

3
√
24n × (2n+ 1)!

.

Similar evaluations forces

(3.31) U(k, 4) =

{
0 k = 2n, n ∈ A,

−1
4
√
24n×(2n+1)!

k = 2n+ 1, n ∈ A.

Hence we obtain the u(x, t) as follows

u(x, t) ≃ t√
2

∞∑
n=0

x2n+1

4n(2n+ 1)!
− t2

2
√
2

∞∑
n=0

x2n+1

4n(2n+ 1)!
+

t3

3
√
2

∞∑
n=0

x2n+1

4n(2n+ 1)!

− t4

4
√
2

∞∑
n=0

x2n+1

4n(2n+ 1)!
+ ...,(3.32)

which it is the Taylor expansion of the

(3.33) u(x, t) =
√
2 sinh

(x
2

)
ln(1 + t),

where it is the exact solution of this example.

Example 3.3. In accordance with Can et al. (2009), for 0 < γ = 2δ, α = 1+β, the function
u(x, t) = cos (x− t) is a solution of the equation (1.1) [10]. With the initial and boundary
conditions f(x) = cosx, g(t) = cos t, q(t) = sin t, this is the only solution. For simplicity of
discussion, suppose β = δ = 1, and hence α = γ = 2. From Eqs. (3.5)-(3.7), we have

(3.34) U(0, h) =

{
(−1)n

(2n)! h = 2n, n ∈ A,
0 h = 2n+ 1, n ∈ A.

,

(3.35) U(k, 0) =

{
(−1)n

(2n)! k = 2n, n ∈ A,
0 k = 2n+ 1, n ∈ A.

,

(3.36) U(1, h) =

{
(−1)n

(2n+1)! h = 2n+ 1, n ∈ A,
0 h = 2n, n ∈ A.
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Eq. (3.4) forces

(k + 1)(k + 2)(h+ 1)U(k + 2, h+ 1) = (h+ 1)U(k, h+ 1) + 2(k + 1)U(k + 1, h)(3.37)

+

k∑
r=0

h∑
s=0

{
2(r + 1)U(r + 1, h− s)U(k − r, s) + (r + 1)(r + 2)(k − r + 1)U(r + 2, h− s)U(k − r + 1, s)

+(r + 1)(r + 2)(r + 3)U(r + 3, h− s)U(k − r, s)

}
.

By a mathematical induction we show that U(2m, 1) = 0, m ∈ A. Eqs. (3.34)-(3.36) and Eq.
(3.37) with h = 0, k = 0, forces U(2, 1) = 0. This equation and Eq. (3.34) show that the
property are true for m = 0, 1. Now suppose m ∈ N and the property is true for 0, 1, ...,m.
Eqs. (3.34)-(3.36) and Eq. (3.37) with h = 0, k = 2m, imply that

(2m+ 1)(2m+ 2)U(2m+ 2, 1) = U(2m, 1) + 2(2m+ 1)U(2m+ 1, 0)(3.38)

+

[ k2 ]=m∑
n=0

{
2(2n+ 1)U(2n+ 1, 0)U(2m− 2n, 0)

+(2n+ 1)(2n+ 2)(2m− 2n+ 1)U(2n+ 2, 0)U(2m− 2n+ 1, 0)

+(2n+ 1)(2n+ 2)(2n+ 3)U(2n+ 3, 0)U(2m− 2n, 0)

}

+

[ k+1
2 ]=m∑
n=1

{
2(2n)U(2n, 0)U(2m− 2n+ 1, 0) + (2n)(2n+ 1)(2m− 2n+ 2)U(2n+ 1, 0)U(2m− 2n+ 2, 0)

+(2n)(2n+ 1)(2n+ 2)U(2n+ 2, 0)U(2m− 2n+ 1, 0)

}
= 0.

Hence the property U(2m, 1) = 0 is true for all m ∈ A. Note that in accordance with
Remark 2.2,

∑k=2m
r=0 ar =

∑[ k2 ]=m

n=0 a2n +
∑[ k+1

2 ]=m

n=1 a2n−1. Now suppose m ∈ N and put
k = 2(m− 1) + 1 ∈ N, h = 0, in (3.37), then

2m(2m+ 1)U(2m+ 1, 1) = U(2(m− 1) + 1, 1) + 2(2m)U(2m, 0)(3.39)

+

[ k2 ]=m−1∑
n=0

{
2(2n+ 1)U(2n+ 1, 0)U(2(m− n− 1) + 1, 0)

+(2n+ 1)(2n+ 2)(2m− 2n)U(2n+ 2, 0)U(2m− 2n, 0)

+(2n+ 1)(2n+ 2)(2n+ 3)U(2n+ 3, 0)U(2(m− n− 1) + 1, 0)

}

+

[ k+1
2 ]=m∑
n=1

{
2(2n)U(2n, 0)U(2m− 2n, 0) + (2n)(2n+ 1)(2m− 2n+ 1)U(2n+ 1, 0)U(2m− 2n+ 1, 0)

+(2n)(2n+ 1)(2n+ 2)U(2n+ 2, 0)U(2m− 2n, 0)

}
.
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In accordance with (3.34)-(3.36), we obtain

2m(2m+ 1)U(2m+ 1, 1) = U(2(m− 1) + 1, 1) +
(−1)m

(2m− 1)!

{
2−

m∑
n=1

(
2m− 1
2n− 2

)
+

m∑
n=1

(
2m− 1
2n− 1

)}

= U(2(m− 1) + 1, 1) +
2(−1)m

(2m− 1)!
, m ∈ N.(3.40)

Hence we can write

(3.41) U(2m+ 1, 1) =
U(2(m− 1) + 1, 1)

2m(2m+ 1)
+

2(−1)m

(2m+ 1)!
, m ∈ N.

By a mathematical induction we show that U(2m + 1, 1) = (−1)m

(2m+1)! , m ∈ A. According to
(3.36), U(1, 1) = 1 and hence the property is true for m = 0. Put m = 1 in Eq. (3.41), then
we obtain U(3, 1) = −1

3! and hence the property is true for m = 1. Now suppose m ∈ N and
the property is true for 0, 1, ...,m, then these hypotheses and Eq. (3.41) imply that

U(2m+ 1, 1) =
U(2(m− 1) + 1, 1)

2m(2m+ 1)
+

2(−1)m

(2m+ 1)!

=
(−1)m−1

(2(m− 1) + 1)!2m(2m+ 1)
+

2(−1)m

(2m+ 1)!
=

(−1)m

(2m+ 1)!
.(3.42)

So the property is true for all m ∈ A. In accordance with the above discussion, we obtain

(3.43) U(k, 1) =

{
(−1)m

(2m+1)! k = 2m+ 1,m ∈ A,
0 k = 2m,m ∈ A.

For h = 1, k ∈ A, Eq. (3.37) forces

2(k + 1)(k + 2)U(k + 2, 2) = 2U(k, 2) + 2(k + 1)U(k + 1, 1)

+

k∑
r=0

{
2(r + 1) (U(r + 1, 1)U(k − r, 0) + U(r + 1, 0)U(k − r, 1))

+(r + 1)(r + 2)(k − r + 1) (U(r + 2, 1)U(k − r + 1, 0) + U(r + 2, 0)U(k − r + 1, 1))

+(r + 1)(r + 2)(r + 3) (U(r + 3, 1)U(k − r, 0) + U(r + 3, 0)U(k − r, 1))

}
.(3.44)

Eqs. (3.35),(3.43) and Eq. (3.44) with k = 2m+ 1, m ∈ A, imply that

(3.45) 2(2m+ 2)(2m+ 3)U(2m+ 3, 2) = 2U(2m+ 1, 2).

In accordance with Eq. (3.36), U(1, 2) = 0, and hence using a mathematical induction on Eq.
(3.45) implies that U(2m + 1, 2) = 0, m ∈ A. By a mathematical induction we shall show
that U(2m, 2) = (−1)m−1

2(2m)! , m ∈ A. In accordance with Eq. (3.34), U(0, 2) = −1
2 , and hence

the property is true for m = 0. Eqs. (3.34)-(3.36) and Eq. (3.44) with k = 0 imply that
U(2, 2) = 1

4 . Hece the property is true for m = 1. Now suppose m ∈ N and the property is
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true for 0, 1, ...,m. Eq. (3.43) and Eq. (3.44) with k = 2m, imply that

2(2m+ 1)(2m+ 2)U(2m+ 2, 2) = 2U(2m, 2) + 2(2m+ 1)
(−1)m

(2m+ 1)!
(3.46)

+

[ k
2
]=m∑

n=0

{
2(2n+ 1)

(−1)n

(2n+ 1)!
× (−1)m−n

(2m− 2n)!
+ (2n+ 1)(2n+ 2)(2m− 2n+ 1)

(−1)n+1

(2n+ 2)!
× (−1)m−n

(2m− 2n+ 1)!

+(2n+ 1)(2n+ 2)(2n+ 3)
(−1)n+1

(2n+ 3)!
× (−1)m−n

(2m− 2n)!

}

+

[ k+1
2

]=m∑
n=1

{
2(2n)

(−1)n

(2n)!
× (−1)m−n

(2m− 2n+ 1)!
+ (2n)(2n+ 1)(2m− 2n+ 2)

(−1)n

(2n+ 1)!
× (−1)m−n+1

(2m− 2n+ 2)!

+(2n)(2n+ 1)(2n+ 2)
(−1)n+1

(2n+ 2)!
× (−1)m−n

(2m− 2n+ 1)!

}
= 2U(2m, 2) + 2

(−1)m

(2m)!
.

Therefore

U(2m+ 2, 2) =
U(2m, 2)

(2m+ 1)(2m+ 2)
+

(−1)m

(2m+ 2)!

=
(−1)m−1

2(2m)!(2m+ 1)(2m+ 2)
+

(−1)m

(2m+ 2)!
=

(−1)m

2(2m+ 2)!
.(3.47)

This meanse the property is true for m+ 1, and hence the property is true for all m ∈ A. In
accordance with the above discussion, we obtain

(3.48) U(k, 2) =

{
(−1)m−1

2(2m)! k = 2m,m ∈ A,
0 k = 2m+ 1,m ∈ A.

In accordance with Eq. (3.34), U(0, 3) = 0. Eqs. (3.34)-(3.36) and Eq. (3.37) with h =
2, k = 0, imply that U(2, 3) = 0. Eqs. (3.35),(3.43),(3.48) and Eq. (3.37) with h = 2, k =
2m,m ∈ N, imply that

(3.49) U(2m+ 2, 3) =
U(2m, 3)

(2m+ 1)(2m+ 2)
,

Therefore by using a mathematical induction we obtain U(2m, 3) = 0, m ∈ A. Eqs.
(3.35),(3.43) and Eq. (3.37) with h = 2, k = 2m+ 1,m ∈ A, imply that

(3.50) U(2m+ 3, 3) =
U(2m+ 1, 3)

(2m+ 2)(2m+ 3)
+

(−1)m

3(2m+ 3)!
.

Therefore by using a mathematical induction we obtain

(3.51) U(2m+ 1, 3) =

{
−2

3(2m+1)! m = 2n− 1, n ∈ N,
−1

(2m+1)! m = 2n, n ∈ N.

In accordance with the above discussion, we obtain

(3.52) U(k, 3) =


0 k = 2n, n ∈ A,
−2
3k! k = 4n− 1, n ∈ N,
−1
3! k = 1,
−1
k! k = 4n+ 1, n ∈ N.
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Eqs. (3.35),(3.43),(3.48) and (3.52) imply that

(3.53)
∞∑
k=0

U(k, h)xk =


cosx h = 0,
sinx h = 1,
−1
2 cosx h = 2,
5x−sinx−5 sinhx

6 h = 3.

In accordance with Eq. (2.1), we can write u(x, t) = limn→∞ un(x, t), where

(3.54) un(x, t) =
n∑

h=0

( ∞∑
k=0

U(k, h)xk

)
th.

Figure 1 shows variations of u(x, t) and u3(x, t) in rectangle {(x, t) : |x| ≤ 1, |t| ≤ 0.5}.

Figure 1. Variations of u(x, t) and u3(x, t) as functions of x, t for the Example 3.3.

Conclusion
In this research, the exact solutions of the Dullin-Gottwald-Holm equation has been found

by using differential transform method. This equation has lots of applications in physics.
Obtaining the exact solution for this equation was the strong point of our method. As we saw
in Examples 3.1-3.3, and according to Theorem 2.3 and Table 1, any DGH problem can be
solved analytically by the DTM method. Of course, the scope of Theorem 2.3 goes beyond
DGH problems and covers any similar problem in which ∂n

∂xnu(x, t).
∂m

∂xm v(x, t) appears. In
addition, similar to what we saw in the two-variable Taylor expansion at the origin, the
analytical answer can be obtained at any point where the answer has a Taylor expansion.
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